Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0185715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973030

RESUMO

Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- ß-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.


Assuntos
Burkholderia/metabolismo , Fusão Celular , Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Macrófagos/metabolismo , Camundongos
2.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760929

RESUMO

The human pathogen Burkholderia pseudomallei and the related species Burkholderia thailandensis are facultative intracellular bacteria characterized by the ability to escape into the cytosol of the host cell and to stimulate the formation of multinucleated giant cells (MNGCs). MNGC formation is induced via an unknown mechanism by bacterial type VI secretion system 5 (T6SS-5), which is an essential virulence factor in both species. Despite the vital role of the intracellular life cycle in the pathogenesis of the bacteria, the range of host cell types permissive for initiation and completion of the intracellular cycle is poorly defined. In the present study, we used several different types of human primary cells to evaluate bacterial entry, intracellular survival, and MNGC formation. We report the capacity of B. pseudomallei to enter, efficiently replicate in, and mediate MNGC formation of vein endothelial and bronchial epithelial cells, indicating that the T6SS-5 is important in the host-pathogen interaction in these cells. Furthermore, we show that B. pseudomallei invades fibroblasts and keratinocytes and survives inside these cells as well as in monocyte-derived macrophages and neutrophils for at least 17 h postinfection; however, MNGC formation is not induced in these cells. In contrast, infection of mixed neutrophils and RAW264.7 macrophages with B. thailandensis stimulated the formation of heterotypic MNGCs in a T6SS-5-dependent manner. In summary, the ability of the bacteria to enter and survive as well as induce MNGC formation in certain host cells may contribute to the pathogenesis observed in B. pseudomallei infection.


Assuntos
Burkholderia pseudomallei/fisiologia , Células Gigantes/microbiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Fagócitos/microbiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Células Cultivadas , Citosol/microbiologia , Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Humanos , Queratinócitos/microbiologia , Camundongos , Neutrófilos/microbiologia , Sistemas de Secreção Tipo VI/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...